
Global Level-1 Operations Manual

Rev 0.1
July 13, 1999

J. Lajoie
lajoie@iastate.edu

1

Introduction

The Global Level-1 trigger (GL1) is the part of the PHENIX online system
that is responsible for generating triggers from the Local Level-1 (LL1) reduced
bit data , coordinating busies, and managing partitioned running of the PHENIX
detector. The GL1 system is comprised of three types of 9U VME-P boards with
very specific responsibilities:

• GL1 Board 1 (GL1-1) generates triggers from reduced bit input
• GL1 Board 2 (GL1-2) manages the busies and Dead-4-4 counters
• GL1 Board (GL1-3) generates the granule accept vector and manages
the accepted event readout.

This document is intended to describe the typical operation of both the
GL1 hardware and software. By referring to this guide you should be able to set
up and program GL1. However, it is not intended to make you a GL1 expert or
facilitate anything more than rudimentary debugging of the system.

What To Do If You Find an Error in This Manual

As long as PHENIX is in operation, this manual will be a "work in
progress." If you find portions of this manual that are misleading or inaccurate, or
you have suggestions for making the manual more useful please contact the
author (lajoie@iastate.edu).

The current revision (Rev. 0) contains a number of items that are specific
to the RHIC Engineering Run (ER).

Definitions

As in all manuals, a few definitions are in order to get things off on the
right foot. All computer input, output, typed commands and filenames will appear
in Times Roman Bold type. All program messages and references to buttons,
etc., will appear in bold type. File listings are shown in Times Roman type.
Computer prompts are shown as ">"; this may be different depending in the
system you are logged in to.

The most critical definition, however, is reserved for the phrase "consult an
expert". Simply put, and expert is someone who knows more than you. In some
cases where you are asked to consult an expert you may know what to do to fix a
problem, but it may be more important to find out why things went wrong in the
first place.

2

The PHENIX Level-1 contact is:

John Lajoie
BNL extension 1266 (ER only)
1-515-294-6952 (ISU office)
1-515-963-9818 (home - use this wisely!)
1-515-480-8312 (cell phone - use this very wisely!)

Overview of the Level-1 Trigger

A schematic of the PHENIX Trigger and Timing systems is shown in
Figure 1. Note in particular the connections between GL1 and the Granule
Timing Modules (GTMs), where each granule controls four signals that can be
sent to GL1. Two of these are busies (FEM Unreliable and DCM Busy/Full)
and are sent to GL1-2 to hold off triggers for that granule (and any partition that
owns that granule). The other two (Granule Disable and Forced Accept) are
available for use as reduced bit inputs on GL1-1. Note that these inputs are
available by programming the LL1 mode bits in the GTM scheduler for any
granule, not just LL1 participant systems.

The box labeled LL1 in Figure 1 represents any system that places
reduced bit information on the GL1 backplane where it is available for trigger
purposes. While in the future this will be dedicated LL1 electronics for systems
such as BBC, EMCAL, etc., during the ER this functionality is provided by a
transition card in the back of the GL1 crate called the Reduced Bit Input Board
(RBIB). This board accepts TTL signals on Lemo cables and converts them to
the LVDS standard used by the input transition cards (called the 6Rx due to its
six input connectors). The configuration of the GL1 for the ER is described fully
in a later section.

In order to better understand how GL1 generates a trigger, it is instructive
to look at the flow of a single trigger through the GL1 system, as shown in Figure
2. The available information for making a trigger decision is placed by the 6Rx
transitions cards on a backplane bus in the GL1 crate, called the reduced bit
input bus. The user programs a crossbar to select which bits will be used as the
input address to a SRAM lookup table (LUT). These bits can be selected as four
groups of 20 (out of the 130 bits available) for each GL1-1 board in the system.

The SRAM LUT is then programmed based on the input address to
generate output for selected conditions. For a given trigger, a nonzero output bit
from the LUT at this point is called a raw trigger. Raw triggers are counted in
VME addressable counters on GL1-1. At this point the trigger can be masked off
with a user-programmable mask.

3

Figure 1: The PHENIX Trigger and timing system. Note in particular the four signals (Granule
Disable, Forced Accept, FEM Unreliable, and DCM Busy/Full) that are available for each granule to
send as inputs to GL1. The Level 1 Data Distributor does not exist for the Engineering Run; instead
the GL1 accepted event data is read out directly via a DCM partitioner board.

The next step is to apply the busy for the partition that owns this trigger.
The busies are contained on a second bus on the backplane, called the partition
busy bus, that is managed by GL1-2 and includes the Dead-4-4 counters. A
programmable crossbar maps the partition busy for the partition that owns the
trigger in question and the busy is applied to the raw trigger. A trigger that passes
the busy test is called a live trigger and is again kept track of by counters in GL1-
1.

4

Figure 2: A closeup of a single GL1 trigger, showing the flow and programmable elements in the
system.

Finally, a programmable scaledown counter is applied to prescale active
triggers, and again the output is counted. A trigger passing the scaledown test is
called an accepted or scaled trigger and is mapped by a third crossbar to a line
on the partition accept bus. This bus is monitored by GL1-3 and used to
generate the granule accept vector (via another crossbar, not shown in Figure 2)
that is sent to the Master Timing Module (MTM).

5

From the point at which reduced bit data is presented on the reduced bit
input bus to when the granule accept vector is sent to the MTM requires three
beam clocks in GL1.

The GL1 Hardware

The GL1 trigger crate is located in PRR.1.1 in the electronics area of the PHENIX
counting house. The Timing System is located in rack PRR.1.5. The Level-1
trigger rack is typically left closed to prevent dust and contamination from building
up on the GL1 boards. If you need to open the rack (to see the lights, for
example) you will need a "crate key" (or a screwdriver).

For reference, Figure 3 shows a schematic diagram of the GL1 crate and
associated 9U VME cards, transition cards and beam rate inputs. This diagram
can be used to identify the GL1 transition cards and GL1 internal cabling. It
should be noted that each end of the GL1 LVDS cabling is labeled with the signal
names on each connector end.

Figure 3: A schematic view of the GL1 crate, showing the associated transition cards and beam rate
inputs. Each line in the above corresponds to an LVDS cable. Note that for the ER GL1 uses a
shorter backplane and the 9U and transition cards may not be located exactly as shown.

6

Like all VME systems in PHENIX, the GL1 crate is controlled by a PPC
VME processor (currently iocondev14). This processor is located in the leftmost
slot (slot 0) of the GL1 crate and can be reset by pressing the Reset button on
the front panel. Note that all the GL1 boards monitor the VME SYSRESET signal
and will automatically reset themselves when the VME processor is reset. Thus,
resetting the processor will necessitate reloading the GL1 configuration to ensure
proper trigger operation. While each of the GL1 boards have independent reset
buttons, use of these buttons is strongly discouraged. Should it be necessary,
the proper way to reset the GL1 crate is reset the PPC VME processor.

Figure 4 : The GL1 board front panels and a description of their LEDs. The busies indicated by
GL1-2 and GL1-2 are likely to be of particular importance to the user.

The GL1 trigger boards contain a set of lights intended to indicate to the
user quickly the status of the various GL1 signals, as shown in Figure 4. Of
particular importance are the Granule Busy and FEM Unreliable lights on GL1-2.
If either of these lights are illuminated for a given granule, triggers for that
granule (and any partition that contains it) will be busied out. This is often the
first place to look when the complaint "Hey, I'm not getting any triggers!" arises.
In addition, the global VME busy on GL1-2 is indicated by a small LED in the
lower left of the board.

The GL1-3 board contains a set of "global" busies that will hold off all
triggers in all partitions, as indicated by red lights on the front panel. The

7

Misc/Global busy is (at present) connected to the DCM that is receiving the GL1
accepted event data. The Governor Busy is a busy generated by a
programmable "throttle" on the GL1 accepted event rate; currently this throttle is
set to limit the accepted event rate to less than 25kHz.

In addition to the busy lights on GL1-3, there is also a green LED to
indicate that the GL1 system is receiving a proper beam clock signal from the
GTM in the GL1 crate. This light should always be lit during normal operation of
the trigger - without a beam clock, most elements of the trigger will not function.
When the GTM controlling GL1 is properly cycling (the Mode Enable signal is
high) an additional green LED will be lit on the GL1-3 front panel. While this LED
should be on for normal operation of the trigger, it should be off before or during
configuration of the GL1 system. Certain items, such as the GL1-1 LUTs, will not
permit load operations while Mode Enable is high.

Finally, all three boards have a green LED to indicate VME activity. This
light can be used as a visual indication to verify that software is actually
addressing the correct boards during program operations such as configuration,
etc. A red LED at the top of each board indicates failure of the Geographical
Address Parity circuit - this LED should never be lit during normal operation. If
this LED is lit, it likely indicates a catastrophic failure in the GL1 board or the
VME crate - call an expert.

Please note that the GTM controlling the GL1 is not located in the Timing
System rack, but in the crate with the GL1 itself. This simplifies the control of GL1
and facilitates software control of the GL1 GTM for downloading and
configuration. While the normal GTM tools can be used to configure this GTM
and load mode bit files, the GL1 configuration utility takes care of this
automatically for ordinary running. In addition, starting and stopping the GL1
GTM is done automatically when using the GL1 configuration utilities.

Much of the cabling that is critical to the proper operation of GL1 is located
in the back of the Timing and Control System rack (PRR.1.5). In the bottom of
this rack there is an aluminum box labeled GTM->GL1 Transition box which
receives 32 RJ45 cables (one from each potential GTM) and maps them to the
eight LVDS cables that are sent to GL1. Each RJ45 connector on the transition
box corresponds to a very specific granule and labels on the box will show you
how to identify the connectors. It is where the RJ45 cable is plugged into the
transition box that defines what granule number a given GTM is mapped to. It is
important to keep this hardware mapping synchronized with the software
described in later sections or mass confusion will result!

In addition, two cables carry the granule accept vector from the Standard
Transition card in the GL1 crate (see Figure 3) to the MTM fanout in the back of
the Timing and Control rack. This MTM fanout card receives the two LVDS
cables from GL1 and splits them out into 32 RJ45 connectors to the GTMs. The

8

MTM card has two RJ45 blocks; the upper block contains granules 0-15, while
the lower contains granules 16-31. Each block's connectors are numbered "like
a chip" starting in the upper left hand corner, down the lefthand side, and up the
righthand side of the connector.

Once again, the RJ45 cabling is crucial - a given GTM must be connected
to the same granule number in both the GTM-> GL1 fanout box and the MTM
fanout box. If this is not followed, a given GTM will either not receive accepts (at
best) or receive accepts for a different granule (at worst).

The above descriptions of the GL1 and Timing and Control cabling lead to
one simple rule - please leave it alone! If you need to swap out a GTM (for
whatever reason) leave the cabling and transition card in the back of the crate
alone and just swap GTMs in the front of the crate. If you must remove and
replace a GTM transition card, double (and triple) check that the GL1 and MTM
cabling is correct when you are finished.

Programming the Global Level-1 Trigger

Programming the Global Level-1 trigger consists of five separate steps:

1. Defining the granule-to-partition mapping.
2. Defining the trigger to partition mapping.
3. Defining the reduced bit input to each GL1-1 lookup table.
4. Defining triggers based on the LUT input.
5. Writing a gui config file to download the new configuration.

(Note that steps 2,3, and 4 must be repeated for each GL1-1 board in the
system)

This section will take you through each of the five steps in detail. After
reading this section you should be able to completely reconfigure the GL1 trigger
to suit a wide variety of conditions.

Before we start, let's set some ground rules. The instructions that follow
assume that you have logged into phoncs0 as user phoncs, and executed the
setup command files for both the production release of the online distribution and
the GL1 package. An example session (after you have logged in) would go
something like:

9

> setuponcs R-pro
selecting release R-pro

 setting up the ONCS environment R-pro

Current directory is /export/software/oncs/R2.2/online_distribution
> cd GL1/config

The above example will leave you in the directory /export/software/oncs/R-
pro/online_distribution/GL1/config. This directory contains the GL1 configuration
programs and scripts.

Figure 5: The granule to partition mapping configuration program. Note that some granules (in the
lefthand column) have been given names, as described in the text.

10

We will start by associating granules with partitions. Execute the script
set_gl2_128b script by typing ./set_gl2_128b (While this name may seem rather
non-intuitive, the name of the program is associated with a specific type of
crossbar in GL1-2). You should be rewarded with a screen like that in Figure 5.

This is a simple mapping program, with partition numbers listed in
columns and granule names (or numbers) listed in rows. You assign a granule to
a partition by clicking the mouse on the box corresponding to the granule and
partition number intersection. If you select a granule incorrectly, you may
deselect it by clicking again on the highlighted box. A message will appear under
the command buttons confirming the mapping and unmapping actions.

At this point a few important comments are in order. First of all, the
granule names and their assignment to granule numbers is contained in the file
.gl1_granule_names in the config directory (note that this may be a symbolic link
to a file in the online configuration directory). The format is very simple - granule
number is listed followed by a name, with a granule number -1 terminating the
sequence. An example is listed below:

8 EMCAL.W
9 TEC.E
12 BBC
15 ZDC
-1

You should be aware that only administrative controls keep this file
synchronized with the actual hardware configuration (see The GL1 Hardware
section). It is critically important that the information in the file be kept
synchronized with the GL1 cabling configuration in the Timing and Control rack.
This information is used by the set_gl2_128b program for display purposes, but it
is also used by the run control partition server to list what granules are available
in a partition. A great deal of confusion will ensue if the .gl1_granule_names file
does not match the hardware configuration, so if you must edit it please do so
carefully!

OK, so you are happily clicking away and you have a granule to partition
map that you like. (Note that the program will prevent you from mapping a
granule to more than one partition - a definite PHENIX no-no!) Selecting the
Save File button at the top of the grid will allow you to save your configuration -
choose a filename like set_gl2_128b_xxxxx.dat, where xxxxx is an identifier of
your choice. Something like set_gl2_128b_modeQ.dat is fine, but try to be as
descriptive as possible. Once you have saved you mapping, you will be able to
reload and edit it again later by using the Load button.

The next step is to compile the mapping into a set of crossbar files that
can be downloaded into the GL1 boards. Click on the Compile button; if you
receive any message other than Crossbar files compiled successfully across

11

the top of the screen, consult an expert. If all is well, you can exit the program
with the Quit button.

The compilation procedure for set_gl2_128b will have generated two new
files - gl2_128b.actel and gl3_128b.actel, corresponding to the granule to partition
mapping required by crossbars on GL1-2 and GL1-3. You should move these
files to the online configuration area:

> mv gl2_128b.actel $ONLINE_CONFIGURATION/GL1/gl2_128b_xxxxx.actel
> mv gl3_128b.actel $ONLINE_CONFIGURATION/GL1/gl3_128b_xxxxx.actel

where xxxxx is the configuration name of your choice.

The next step is to assign triggers to partitions. This is done with the
set_gl1_128b program, which can be executed by typing ./set_gl1_128b which will
produce the configuration screen shown in Figure 6.

Figure 6: The trigger to partition mapping program. The interface is similar to that used for the
granule to partition mapping program.

12

Since the interface for this program is almost identical to the set_gl2_128b
program we have previously discussed, we won’t go over it in great detail here.
Some of the same caveats for mapping granules to partitions apply for mapping
triggers to partitions, however. Note that a given trigger can belong to one and
only one partition, and the program will prevent mapping a trigger to more than
one partition.

When you are happy with the trigger to partition mapping you have
generated, save the file under the name gl1_128b_xxxxx.dat and compile the
crossbar files. You will be rewarded with two new files, gl1_128b.actel and
gl1_128b.bin. These two different types of files are used to provide mappings for
two different types of crossbars on GL1-1. As before, copy these files to the
online configuration area, renaming them to reflect the name of your
configuration:

> mv gl1_128b.actel $ONLINE_CONFIGURATION/GL1/gl1_128b_xxxxx.actel
> mv gl1_128b.bin $ONLINE_CONFIGURATION/GL1/gl1_128b_xxxxx.bin

The next step is to define the address to the LUTs that will be used to
define each trigger by mapping lines from the reduced bit input bus; you will have
to do this for each trigger you mapped to a partition in the previous step. Start
the configuration program by typing ./set_gl1_240b. You should see a
configuration screen like that shown in Figure 7.

It is useful to remember the architecture of GL1-1 at this point. Each set
of four triggers is generated as the output of a LUT that takes 20 bits of address
from the GL1 reduced bit input bus. Your job at this point is to define which 20
bits will be mapped to which lookup table. Triggers 1-4 are controlled by LUT 1,
5-8 by LUT 2, etc. Select the LUT you want to work with by the radio buttons at
the left of the configuration screen, then select the GL1 reduced bit input bus
elements from the menu at the right. You can clear a selection with the right
mouse button. Start from the lowest bits in the address and work your way up.
Don't worry about uncommitted address bits; the program will automatically force
those bits low when the crossbar files are compiled.

As an example, Figure 7 shows a configuration where LUT 1 is using
Forced Accept 9 (the Forced Accept bit for granule 9) as the input to bit 0 of the
LUT address.

You may want to record your configuration for the 4 LUTs separately if
your configuration becomes complicated, as they will be used in the next step to
generate the LUT data files themselves.

As before, save your configuration under the name gl1_240b_xxxxx.dat
and then compile the crossbar files. If all goes well, you will have generated two

13

new files: gl1_240b.U11.bin and gl1_240b.U12.bin. As before, copy them to the
online configuration area and rename them to match your configuration name:

> mv gl1_240b.U11.bin $ONLINE_CONFIGURATION/GL1/gl1_240b_xxxxx.U11.bin
> mv gl1_240b.U12.bin $ONLINE_CONFIGURATION/GL1/gl1_240b_xxxxx.U12.bin

Up to this point, configuring the GL1 has been a purely graphical exercise.
However, the program to generate the GL1 LUT files is a command line utility
that takes a configuration file as input. What follows next may sound
complicated, but keep in mind the basic job of this utility is to loop over all
combinations on the 20 bit LUT address and generate raw triggers for only those
combinations that you select.

To start with, copy over the example file to a file name representing your
current configuration and edit the new file:

> cp gl1_lut.input.example gl1_lut_xxxxx.input
> emacs gl1_lut_xxxxx.input

where xxxxx is the name of your configuration. The above commands should
open the file in an emacs window, and the file it contains should look something
like this:

NAMES
FORCED_ACCEPT9 0x1
UNUSED 0xFFFFE
END

TRIG 0
END

TRIG 1
END

TRIG 2
END

TRIG 3
END

TRIG 4
FORCED_ACCEPT9.GT.0x0
UNUSED.EQ.0x0
END

 (The listing should include all 32 triggers as separate sections, but I have
truncated the list here to save space.) As you can see, the LUT input file

14

contains sections which start with a section name (NAMES, TRIG 1, etc.) and are
terminated with the END keyword. The NAMES section defines named masks
on the 20 bit LUT address, while the TRIG sections generate LUT entries based
on those named masks. Note that numbers listed in these section are listed in
hexadecimal format (starting with a "0x").

Figure 7: The GL1 lookup table address mapping program. The LUT to be configured is selected by
the radio buttons at the left, while the address bit to be mapped is selected by the radio buttons for
each bit. Clicking on a named signal will map that signal to the input bit.

The example file contains two named masks - FORCED_ACCEPT9 and
UNUSED. FORCED_ACCEPT9 is a mask that selects the first bit (bit 0) in the

15

LUT address, while UNUSED is a named mask that selects all other bits. These
masks are used to generate triggers in the TRIG sections that come later in the
file. In the example, trigger four (in the TRIG 4 section) is defined as the address
bits specified by FORCED_ACCEPT9 being set while the unused bits are low
(recall that in the set_gl1_240b program unused LUT address bits are grounded).
This is a complicated way of coding a trigger that will fire when the forced accept
bit for granule nine is set.

When writing a LUT configuration input file, keep in mind that you should
use named masks that represent the data bits they are defining. This will make it
much easier later on when you try to recall how a trigger was defined from the
input file. Also, note that close coordination is required between the mapping you
define for address bits using the set_gl1_240b program and the triggers you
define in the LUT input file. Getting confused here is a great way to screw up a
trigger, and at present there is no software enforcement that the address bit
mapping and the LUT definitions coincide (One way to help this would be to have
the set_gl1_240b program generate a skeleton trigger input file - JGL).

Fill in the NAMES section with masks that define the trigger elements you
want to use, then fill in the TRIG section with tests based on these masks to
define trigger conditions. The comparisons in the TRIG section recognize the
keywords ".GT." (greater than), ".LT." (less than), ".EQ." (equals), ".GE." (greater
than or equal to) and ".LT." (less than or equal to).

When you are ready, save the file, exit the emacs editor, and generate the
LUT data file from the input file:

> ./gl1_lut gl1_lut_xxxxx.input gl1_lut_xxxxx
Collecting input names...done - found 16 named inputs.
Collecting trigger definitions...done
Generating LUT entries according to rules...done

This will generate a file gl1_lut_xxxxx.lut, assuming there were no errors. If there
were any errors in format, etc., the program will try to indicate to you the nature
of the error and the section it was found in. Move the LUT file to the online
configuration area:

> mv gl1_lut_xxxxx.lut $ONLINE_CONFIGURATION/GL1/gl1_lut_xxxxx.lut

It is important to note that for the ER there is only one GL1-1 board.
When there are multiple GL1-1 boards in the near future, you will have to repeat
the previous three steps (set_gl1_128b, set_gl1_240b and gl1_lut) for each GL1-1
board in the system. (NOTE: the naming convention for the files will also have to
change to indicate which GL1-1 board the files are for. JGL)

16

At this point you have generated all of the necessary configuration files for
GL1. You must now generate a file that that defines this configuration for the
GL1 download program. Start by changing directory to the online configuration
area for GL1, copying the example file over to a new file tagged with your
configuration name, and opening the file in an editor window:

> cd $ONLINE_CONFIGURATION/GL1
> cp config_startup_example.config config_startup_xxxxx.dat
> emacs config_startup_xxxxx.dat

The example config file should look like:

Crate startup config file

BOARD GL1-1 10 {
 actelxbar gl1_128b_xxxxx.actel
 xbar2 gl1_128b_xxxxx.bin
 xbar1 gl1_240b_xxxxx.U12.bin
 xbar0 gl1_240b_xxxxx.U11.bin
 trmask 0x0
 lut gl1_lut_xxxxx.lut
pipectl 0x39
}

BOARD GL1-2 8 {
 actelxbar gl2_128b_xxxxx.actel
 tstreg 0x0 0x0 0x00040002
 pipectl 0x39
}

BOARD GL1-3 12 {
 actelxbar gl3_128b_xxxxx.actel
 orxbar 0xFFFFFFFE
 govdelay 377
 pipectl 0x08
}

BOARD GTM 3 {
 modebits GTM.GL1.gtm
}

This file consists of a number of named sections for the GL1 boards.
Comments lines are preceded by the # character. To update this file for your
configuration, replace the xxxxx entries with the chosen configuration name.
Note that this format allows you to create a mixed configuration from a variety of
configuration names, but that will be very difficult to maintain in the long run.

17

Other entries, such as pipectl, orxbar, govdelay, the section headers, and the GTM
section should be left alone and are for "experts only".

For the ER, only one GL1-1 board is in place. When there are additional
GL1-1 boards available, each board will have an entry in the configuration file.

If you have reached this point after working through all of the above
configuration steps, congratulations! You now have a complete GL1
configuration and you are ready to try it out by downloading it into the GL1
system.

The GL1 Management GUI

The GL1 system is most easily controlled by the average user though a
Tcl/Tk gui. This gui encapsulates the most common GL1 functions into a set of
easy to follow menus and button.

To start the gui, change directory to the GL1 area and start the gl1 script:

> cd $ONLINE_DISTRIBUTION/GL1/gui
> gl1

This will start up the gui, and you will be presented with a window with buttons
across the top for the various GL1 elements. You should see a window that
looks like that in Figure 8. Each page of the gui is organized the same: the top
row of buttons accesses the configuration pages for the different boards, the
Options section contains buttons for the user commands, while the Status
section displays status information. From this window you can control the
configuration of the gui itself (with such command as Set rsh command and Set
timeout) as well as the GL1 crate itself. At the bottom of the window is a listing
of the number of boards in the GL1 crate, the rsh command used, the timeout
value, and a checkbutton that indicates the current state of the GL1 global VME
busy.

The configuration of the GL1 crate (in terms of what board is in what slot)
is loaded by the GL1 gui from the file gl1_crate.config in the GL1 online
configuration directory. At the present time this file looks like:

#Wed Jun 9 14:13:32 CDT 1999
#VME TYPE SERIAL TRANS CARD
10 GL1-1 0 0
8 GL1-2 0 0
12 GL1-3 0 0

18

indicating that there is a GL1-1 board in slot 10, a GL1-2 board in slot 8, and a
GL1-3 board in slot 12. Editing this file should be left for experts only, and is
included here only for reference.

If you are having a problem with GL1 and you suspect that a board is
dead or not answering, you can scan the current crate configuration with the
Scan crate button. This will pop up a window showing you the configuration of
GL1 boards found in the crate, along with any transition cards.

Figure 8: The GL1 gui crate configuration window. Commands are accessed using the buttons under
the Options heading or by the menu headings in the upper left. Configuration pages for different
elements can be accessed using the buttons directly above the PHENIX logo.

In order to download the current configuration that you defined in the
previous section, select the Run crate startup script button. You will be
presented with a file box that you can use to select the crate_startup_xxxxx.config
file for your configuration. At this point the gui will parse the configuration file and
download the GL1 components - if you watch the VME access lights on the
boards, you will see multiple accesses for each board. When the download is
complete, you will be presented with a window asking you to Configure readout.
This command sets the number of word to be read out from each board for an
accepted event - just click the Set button and don't edit any of the values.
Finally, you will be presented with a text window that will display a log file of the
download process. If you suspect that something has gone wrong, you should
see an error message in this file from one of the configuration programs on the
VxWorks processor. If all is well, click the OK button.

The entire process should take less than one minute from the time you
click the Run crate startup script button to the point where you are presented with

19

the log file window. If you suspect that the program is hanging, the problem is
likely with the rsh daemon on the VxWorks processor. See the instructions in the
previous section on resetting the VME processor in the GL1 crate.

Note that running a crate configuration script automatically sets the global
VME busy, and the VME Busy checkbox should be red after the script is
complete. In order to clear the busy, click the Clear busy button on the GL1 gui
crate page. The trigger will now be fully enabled, and should now provide
triggers and accepts (for those partitions that are not themselves busy, of
course).

The GL1-1, GL1-2 and GL1-3 pages in the configuration gui contain
additional commands that allow you to read out and reset the GL1 counters.
Note that counter readout windows are updated automatically by a background
task - if you want to monitor the GL1 counters you can set the counter window in
a corner of our screen and it will update automatically, approximately every
second.

A consequence of this automatic update procedure via rsh (remote shell)
is that every instance of the GL1 configuration gui will try to read from the GL1
boards every second. If too may people start the GL1 gui and leave the program
running the rsh daemon running in the PPC controller will eventually die and all
communication with the GL1 crate will be lost. If this happens, reset the PPC
controller as described in a previous section.

20

Figure 9: The GL1-1 page of the GL1 configuration gui. Access to various GL1-1 functions is
provided through the buttons in the top part of the screen, while status information regarding the
trigger mask, monitor fifos and scaledown settings is shown in panels at the bottom of the window.

An example of the GL1-1 window is shown in Figure 9. The GL1-1, GL1-2
and GL1-3 functions will be more fully described as this document is expanded.
For now, feel free to explore. Of particular use are the Clear counters function
on the GL1-1 page (which clears the raw, live and scaled trigger counters for the
board) and the Clear granule counters function (which allows you to clear
selected granule accept counters in GL1-3).

The GL1 ER Configuration (June-July '99)

For the Engineering Run (ER) there are no LL1 systems in place. The
LL1 functionality is provided by a set of reduced bit inputs from scintillation
counters, the BBC and ZDC via the RBIB board.

These reduced bit definitions are defined and indicated in the listing
below. If you notice an error in this listing or it has become out of date, please
notify the author (lajoie@iastate.edu). You can use this listing below as a
reference when defining triggers based on reduced bits for the ER. The ZDC
and BBC signals are self-explanatory, signal names starting with "T" refer to the

21

scintillation counters, and the BFEBbunch signal is a signal from the ATR
indicating injection into the RHIC blue ring.

Table 1: The ER run reduced bit assignments for the BBC, ZDC, and scintillation counters.

Cable No. Panel No. RBIB
Input No.

Reduced
Bit No. Signal Name

10 1 1 0 BBC(N)
11 2 2 1 BBC(S)
12 3 3 2 BBC(N)*BBC(S)
13 4 4 3 ZDC(N)
14 5 5 4 ZDC(S)
15 6 6 5 ZDC(N)*ZDC(S)

16 7 7 6
(BBC(N)*BBC(S)) AND

(ZDC(N)*ZDC(S))
17 8 8 7 TN
18 9 9 8 TS
19 10 10 9 T1E
20 11 11 10 T2E
21 12 12 11 T1W
22 13 13 12 T2W
23 14 14 13 TEM1
24 15 15 14 TEM2
- - 16 15 BFEBBunch

